Carbon Nanotube Supercapacitors

نویسندگان

  • Wen Lu
  • Liming Dai
چکیده

Supercapacitors (aka, electrochemical capacitors or ultracapacitors) are electrochemical energy storage devices that combine the high energy-storage-capability of conventional batteries with the high power-delivery-capability of conventional capacitors (Burke, 2000; Conway, 1999). Able to achieve higher power and longer cycle life than batteries, supercapacitors have been developed to provide power pulses for a wide range of applications including electric transportation technology (e.g., hybrid electric vehicles (HEVs) and plug-in HEVs), electric utility industry (e.g., emergency backup power and grid system stability improvement), consumer electronics (e.g., laptops, cell phones, pagers, and video cameras), medical electronics (e.g., portable defibrillators, drug delivery units, and neurological stimulators), and military / defense devices (e.g., communication devices, unmanned aerial vehicles, spacecraft probes, and missile systems) (Miller & Burke, 2008; Miller & Simon, 2008). In advanced electric transportation technologies, for example, supercapacitors are being developed as power assists for HEVs and plug-in HEVs, where the supercapacitor is operated to provide peak power during acceleration and hill-climbing, and it can be recharged during regenerative braking (Ehsani et al., 2005). This is extremely useful in achieving better fuel economy, decreasing harmful emissions, and reducing the reliance on petroleum sources. A recent report prepared by the US Department of Energy indicated that supercapacitors have been paid equal attention as to batteries as the future energy storage technologies (US DoE, 2007). The world market for supercapacitors has been growing steadily and rapidly. Nevertheless, in order to improve the performance of the state-of-the-art supercapacitors to satisfy the rapidly increasing performance demands for the applications mentioned above, new electrode materials having superior properties over those of the currently used activated carbon electrodes are needed. This chapter summarizes the recent research and technology in developing carbon nanotube (CNT)-based materials as a new type of electrode materials for supercapacitors. 29

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon Nanotube-Based Supercapacitors

Due to the need for increased power performance, supercapacitors are emerging as an alternative to conventional electric energy storage devices. Because of their unique properties, carbon nanotubes are a promising material for next generation supercapacitors. Specifically, the use of nanotubes to construct supercapacitor electrodes can increases the power density and performance of supercapacit...

متن کامل

Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors

Yarn-based supercapacitors having improved performance are needed for existing and emerging wearable applications. Here, we report weavable carbon nanotube yarn supercapacitors having high performance because of high loadings of rapidly accessible charge storage particles (above 90 wt% MnO2). The yarn electrodes are made by a biscrolling process that traps host MnO2 nanoparticles within the gal...

متن کامل

Carbon/MnO(2) double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors.

The novel carbon (C)/MnO2 double-walled nanotube arrays (DNTAs) are designed and fabricated via template-assisted electrodeposition. The unique DNTA architectures of C/MnO2 composites with high weight fraction of MnO2 allow high electrode utilization ratio and facilitate electron and ion transmission. In the half-cell test, the hybrid C/MnO2 DNTAs as electrodes show a large specific capacitance...

متن کامل

Stretchable, Weavable Coiled Carbon Nanotube/MnO2/Polymer Fiber Solid-State Supercapacitors

Fiber and yarn supercapacitors that are elastomerically deformable without performance loss are sought for such applications as power sources for wearable electronics, micro-devices, and implantable medical devices. Previously reported yarn and fiber supercapacitors are expensive to fabricate, difficult to upscale, or non-stretchable, which limits possible use. The elastomeric electrodes of the...

متن کامل

High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets

By using highly aligned carbon nanotube (CNT) sheets of excellent optical transmittance and mechanical stretchability as both the current collector and active electrode, high-performance transparent and stretchable all-solid supercapacitors with a good stability were developed. A transmittance up to 75% at the wavelength of 550 nm was achieved for a supercapacitor made from a cross-over assembl...

متن کامل

Miniaturized Stretchable and High-Rate Linear Supercapacitors

Linear stretchable supercapacitors have attracted much attention because they are well suited to applications in the rapidly expanding field of wearable electronics. However, poor conductivity of the electrode material, which limits the transfer of electrons in the axial direction of the linear supercapacitors, leads to a serious loss of capacity at high rates. To solve this problem, we use gol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012